Sliced Mutual Information (SMI) is widely used as a scalable alternative to mutual information for measuring non-linear statistical dependence. Despite its advantages, such as faster convergence, robustness to high dimensionality, and nullification only under statistical independence, we demonstrate that SMI is highly susceptible to data manipulation and exhibits counterintuitive behavior. Through extensive benchmarking and theoretical analysis, we show that SMI saturates easily, fails to detect increases in statistical dependence (even under linear transformations designed to enhance the extraction of information), prioritizes redundancy over informative content, and in some cases, performs worse than simpler dependence measures like the correlation coefficient.


翻译:切片互信息(SMI)作为一种可扩展的互信息替代方法,被广泛用于衡量非线性统计依赖性。尽管SMI具有收敛速度更快、对高维数据具有鲁棒性以及仅在统计独立时为零等优点,但我们证明SMI极易受到数据操纵的影响,并表现出反直觉的行为。通过广泛的基准测试和理论分析,我们发现SMI容易达到饱和、无法检测统计依赖性的增强(即使在旨在提升信息提取能力的线性变换下也是如此)、优先考虑冗余而非信息内容,并且在某些情况下,其表现甚至比相关系数等更简单的依赖性度量方法更差。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员