The CL-UZH team submitted one system each for the fixed and open conditions of the NIST SRE 2024 challenge. For the closed-set condition, results for the audio-only trials were achieved using the X-vector system developed with Kaldi. For the audio-visual results we used only models developed for the visual modality. Two sets of results were submitted for the open-set and closed-set conditions, one based on a pretrained model using the VoxBlink2 and VoxCeleb2 datasets. An Xvector-based model was trained from scratch using the CTS superset dataset for the closed set. In addition to the submission of the results of the SRE24 evaluation to the competition website, we talked about the performance of the proposed systems on the SRE24 evaluation in this report.


翻译:CL-UZH团队针对NIST SRE 2024挑战赛的固定条件与开放条件各提交了一套系统。在封闭集条件下,纯音频测试结果采用基于Kaldi开发的X-vector系统实现。视听融合结果则仅使用为视觉模态开发的模型。针对开放集与封闭集条件共提交了两组结果:其中一组基于使用VoxBlink2与VoxCeleb2数据集预训练的模型;针对封闭集条件,另使用CTS超集数据集从头训练了基于Xvector的模型。除向竞赛网站提交SRE24评测结果外,本报告亦探讨了所提系统在SRE24评测中的性能表现。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员