Zero-concentrated differential privacy (zCDP) is a variant of differential privacy (DP) that is widely used partly thanks to its nice composition property. While a tight conversion from $\epsilon$-DP to zCDP exists for the worst-case mechanism, many common algorithms satisfy stronger guarantees. In this work, we derive tight zCDP characterizations for several fundamental mechanisms. We prove that the tight zCDP bound for the $\epsilon$-DP Laplace mechanism is exactly $\epsilon + e^{-\epsilon} - 1$, confirming a recent conjecture by Wang (2022). We further provide tight bounds for the discrete Laplace mechanism, $k$-Randomized Response (for $k \leq 6$), and RAPPOR. Lastly, we also provide a tight zCDP bound for the worst case bounded range mechanism.


翻译:零集中差分隐私(zCDP)是差分隐私(DP)的一种变体,因其良好的组合性质而被广泛使用。虽然最坏情况机制存在从ε-DP到zCDP的紧致转换,但许多常见算法满足更强的保证。本文推导了若干基础机制的紧致zCDP刻画。我们证明了ε-DP拉普拉斯机制的紧致zCDP界恰好为ε + e^{-ε} - 1,证实了Wang(2022)最近的猜想。进一步给出了离散拉普拉斯机制、k-随机响应(当k ≤ 6时)以及RAPPOR的紧致界。最后,我们还给出了最坏情况有界范围机制的紧致zCDP界。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
23+阅读 · 2021年12月19日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员