Few-shot object detection (FSOD) often suffers from base-class bias and unstable calibration when only a few novel samples are available. We propose Prototype-Driven Alignment (PDA), a lightweight, plug-in metric head for DeFRCN that provides a prototype-based "second opinion" complementary to the linear classifier. PDA maintains support-only prototypes in a learnable identity-initialized projection space and optionally applies prototype-conditioned RoI alignment to reduce geometric mismatch. During fine-tuning, prototypes can be adapted via exponential moving average(EMA) updates on labeled foreground RoIs-without introducing class-specific parameters-and are frozen at inference to ensure strict protocol compliance. PDA employs a best-of-K matching scheme to capture intra-class multi-modality and temperature-scaled fusion to combine metric similarities with detector logits. Experiments on VOC FSOD and GFSOD benchmarks show that PDA consistently improves novel-class performance with minimal impact on base classes and negligible computational overhead.


翻译:少样本目标检测(FSOD)在仅有少量新类别样本可用时,常面临基础类别偏差和校准不稳定的问题。我们提出原型驱动对齐(PDA),这是一种轻量级、可即插即用的度量头模块,用于DeFRCN框架,提供基于原型的“第二意见”,与线性分类器形成互补。PDA在可学习的身份初始化投影空间中维护仅支持集的原型,并可选择性地应用原型条件化的感兴趣区域对齐以减少几何失配。在微调过程中,原型可通过带标签前景感兴趣区域的指数移动平均(EMA)更新进行自适应调整——无需引入类别特定参数——并在推理时冻结以确保严格遵循评估协议。PDA采用K最佳匹配方案以捕捉类内多模态特性,并通过温度缩放融合将度量相似度与检测器逻辑值相结合。在VOC FSOD和GFSOD基准测试上的实验表明,PDA能持续提升新类别性能,对基础类别影响极小,且计算开销可忽略不计。

0
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员