Current language model safety paradigms often fall short in emotionally charged or high-stakes settings, where refusal-only approaches may alienate users and naive compliance can amplify risk. We propose ProSocialAlign, a test-time, parameter-efficient framework that steers generation toward safe, empathetic, and value-aligned responses without retraining the base model. We formalize five human-centered objectives and cast safety as lexicographic constrained generation: first, applying hard constraints to eliminate harmful continuations; then optimizing for prosocial quality within the safe set. Our method combines (i) directional regulation, a harm-mitigation mechanism that subtracts a learned "harm vector" in parameter space, and (ii) preference-aware autoregressive reward modeling trained jointly across attributes with gradient conflict resolution, enabling fine-grained, user-controllable decoding. Empirical evaluations across five safety benchmarks demonstrate state-of-the-art performance, reducing unsafe leakage and boosting alignment to human values, with strong gains across multiple evaluation metrics. ProSocialAlign offers a robust and modular foundation for generating context-sensitive, safe, and human-aligned responses at inference time.


翻译:当前的语言模型安全范式在情感激烈或高风险场景中常显不足,仅依赖拒绝策略可能疏远用户,而盲目顺从则会放大风险。我们提出ProSocialAlign,一种测试时、参数高效的框架,可在无需重新训练基础模型的情况下引导生成安全、共情且价值对齐的响应。我们形式化定义了五项以人为中心的目标,并将安全性构建为词典序约束生成:首先施加硬约束以消除有害续写,随后在安全集合内优化亲社会质量。该方法结合了(i)方向性调节——一种在参数空间中减去习得“危害向量”的减害机制,以及(ii)跨属性联合训练、通过梯度冲突解决实现细粒度用户可控解码的偏好感知自回归奖励建模。在五个安全基准上的实证评估表明,该方法取得了最先进的性能,有效降低了不安全内容泄露并显著提升与人类价值观的对齐度,在多项评估指标上均表现出强劲增益。ProSocialAlign为在推理阶段生成情境敏感、安全且与人类对齐的响应提供了稳健且模块化的基础。

0
下载
关闭预览

相关内容

《用于代码弱点识别的 LLVM 中间表示》CMU
专知会员服务
14+阅读 · 2022年12月12日
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
国家自然科学基金
18+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
相关基金
国家自然科学基金
18+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员