The dawn of Generative Artificial Intelligence (GAI), characterized by advanced models such as Generative Pre-trained Transformers (GPT) and other Large Language Models (LLMs), has been pivotal in reshaping the field of data analysis, pattern recognition, and decision-making processes. This surge in GAI technology has ushered in not only innovative opportunities for data processing and automation but has also introduced significant cybersecurity challenges. As GAI rapidly progresses, it outstrips the current pace of cybersecurity protocols and regulatory frameworks, leading to a paradox wherein the same innovations meant to safeguard digital infrastructures also enhance the arsenal available to cyber criminals. These adversaries, adept at swiftly integrating and exploiting emerging technologies, may utilize GAI to develop malware that is both more covert and adaptable, thus complicating traditional cybersecurity efforts. The acceleration of GAI presents an ambiguous frontier for cybersecurity experts, offering potent tools for threat detection and response, while concurrently providing cyber attackers with the means to engineer more intricate and potent malware. Through the joint efforts of Duke Pratt School of Engineering, Coalfire, and Safebreach, this research undertakes a meticulous analysis of how malicious agents are exploiting GAI to augment their attack strategies, emphasizing a critical issue for the integrity of future cybersecurity initiatives. The study highlights the critical need for organizations to proactively identify and develop more complex defensive strategies to counter the sophisticated employment of GAI in malware creation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年6月6日
Arxiv
12+阅读 · 2020年12月10日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年6月6日
Arxiv
12+阅读 · 2020年12月10日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Arxiv
11+阅读 · 2018年3月23日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员