We show that BERT (Devlin et al., 2018) is a Markov random field language model. Formulating BERT in this way gives way to a natural procedure to sample sentence from BERT. We sample sentences from BERT and find that it can produce high-quality, fluent generations. Compared to the generations of a traditional left-to-right language model, BERT generates sentences that are more diverse but of slightly worse quality.


翻译:我们显示, BERT (Devlin等人, 2018年) 是Markov 随机外野语言模式。 以这种方式制定 BERT 将自然程序让给 BERT 的句子样本。 我们从 BERT 抽取判决样本,发现它能产生高质量、流利的世代。 与传统的左对右语言模式的世代相比, BERT 生成的句子更加多样化,但质量稍差。

3
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Conditional BERT Contextual Augmentation
Arxiv
8+阅读 · 2018年12月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员