In addition to its more widely studied cultural movements, American Evangelicalism has a well-developed but less externally visible literary side. Christian Fiction, however, has been little studied, and what scholarly attention there is has focused on the explosively popular Left Behind series. In this work, we use computational tools to provide both a broad topical overview of Christian Fiction as a genre and a more directed exploration of how its authors depict divine acts. Working with human annotators, we first developed a codebook for identifying "acts of God." We then adapted the codebook for use by a recent, lightweight LM with the assistance of a much larger model. The laptop-scale LM is largely capable of matching human annotations, even when the task is subtle and challenging. Using these annotations, we show that significant and meaningful differences exist between divine acts depicted by the Left Behind books and Christian Fiction more broadly.


翻译:除了其广受研究的文化运动外,美国福音派还拥有一个发展成熟但对外界可见度较低的文学侧面。然而,基督教小说领域的研究甚少,现有学术关注主要集中在爆炸性流行的《末日迷踪》系列上。本研究运用计算工具,既提供了基督教小说作为一种文类的广泛主题概览,也对其作者如何描绘神圣行为进行了更具针对性的探索。通过与人工标注者协作,我们首先开发了一套用于识别“上帝行为”的编码手册。随后,在大型模型的辅助下,我们对该编码手册进行了适配,以供近期一款轻量级语言模型使用。这款可在笔记本电脑上运行的轻量级模型在很大程度上能够匹配人工标注结果,即使任务本身具有微妙性和挑战性。基于这些标注,我们揭示了《末日迷踪》系列所描绘的神圣行为与更广泛的基督教小说之间存在显著且有意义的差异。

0
下载
关闭预览

相关内容

LESS 是一个开源的样式语言,受到 Sass 的影响。严格来说,LESS 是一个嵌套的元语言,符合语法规范的 CSS 语句也是符合规范的 Less 代码。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
43+阅读 · 2024年1月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员