We investigate online maximum cardinality matching, a central problem in ad allocation. In this problem, users are revealed sequentially, and each new user can be paired with any previously unmatched campaign that it is compatible with. Despite the limited theoretical guarantees, the greedy algorithm, which matches incoming users with any available campaign, exhibits outstanding performance in practice. Some theoretical support for this practical success was established in specific classes of graphs, where the connections between different vertices lack strong correlations - an assumption not always valid. To bridge this gap, we focus on the following model: both users and campaigns are represented as points uniformly distributed in the interval $[0,1]$, and a user is eligible to be paired with a campaign if they are similar enough, i.e. the distance between their respective points is less than $c/N$, with $c>0$ a model parameter. As a benchmark, we determine the size of the optimal offline matching in these bipartite random geometric graphs. In the online setting and investigate the number of matches made by the online algorithm closest, which greedily pairs incoming points with their nearest available neighbors. We demonstrate that the algorithm's performance can be compared to its fluid limit, which is characterized as the solution to a specific partial differential equation (PDE). From this PDE solution, we can compute the competitive ratio of closest, and our computations reveal that it remains significantly better than its worst-case guarantee. This model turns out to be related to the online minimum cost matching problem, and we can extend the results to refine certain findings in that area of research. Specifically, we determine the exact asymptotic cost of closest in the $\epsilon$-excess regime, providing a more accurate estimate than the previously known loose upper bound.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月21日
Arxiv
1+阅读 · 2023年11月17日
Arxiv
29+阅读 · 2023年2月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2023年11月21日
Arxiv
1+阅读 · 2023年11月17日
Arxiv
29+阅读 · 2023年2月10日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员