Recently, there has been an increasing interest in exploring the application of multiobjective optimization (MOO) in machine learning (ML). The interest is driven by the numerous situations in real-life applications where multiple objectives need to be optimized simultaneously. A key aspect of MOO is the existence of a Pareto set, rather than a single optimal solution, which illustrates the inherent trade-offs between objectives. Despite its potential, there is a noticeable lack of satisfactory literature that could serve as an entry-level guide for ML practitioners who want to use MOO. Hence, our goal in this paper is to produce such a resource. We critically review previous studies, particularly those involving MOO in deep learning (using Physics-Informed Neural Networks (PINNs) as a guiding example), and identify misconceptions that highlight the need for a better grasp of MOO principles in ML. Using MOO of PINNs as a case study, we demonstrate the interplay between the data loss and the physics loss terms. We highlight the most common pitfalls one should avoid while using MOO techniques in ML. We begin by establishing the groundwork for MOO, focusing on well-known approaches such as the weighted sum (WS) method, alongside more complex techniques like the multiobjective gradient descent algorithm (MGDA). Additionally, we compare the results obtained from the WS and MGDA with one of the most common evolutionary algorithms, NSGA-II. We emphasize the importance of understanding the specific problem, the objective space, and the selected MOO method, while also noting that neglecting factors such as convergence can result in inaccurate outcomes and, consequently, a non-optimal solution. Our goal is to offer a clear and practical guide for ML practitioners to effectively apply MOO, particularly in the context of DL.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年6月7日
VIP会员
相关资讯
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员