The aging and increasing complexity of infrastructures make efficient inspection planning more critical in ensuring safety. Thanks to sampling-based motion planning, many inspection planners are fast. However, they often require huge memory. This is particularly true when the structure under inspection is large and complex, consisting of many struts and pillars of various geometry and sizes. Such structures can be represented efficiently using implicit models, such as neural Signed Distance Functions (SDFs). However, most primitive computations used in sampling-based inspection planner have been designed to work efficiently with explicit environment models, which in turn requires the planner to use explicit environment models or performs frequent transformations between implicit and explicit environment models during planning. This paper proposes a set of primitive computations, called Inspection Planning Primitives with Implicit Models (IPIM), that enable sampling-based inspection planners to entirely use neural SDFs representation during planning. Evaluation on three scenarios, including inspection of a complex real-world structure with over 92M triangular mesh faces, indicates that even a rudimentary sampling-based planner with IPIM can generate inspection trajectories of similar quality to those generated by the state-of-the-art planner, while using up to 70x less memory than the state-of-the-art inspection planner.


翻译:基础设施的老化与日益复杂使得高效检测规划对于保障安全愈发关键。得益于基于采样的运动规划方法,许多检测规划器运行迅速。然而,它们通常需要巨大的内存开销。当被检测结构规模庞大且结构复杂,包含大量几何形状与尺寸各异的支柱和立柱时,这一问题尤为突出。此类结构可采用隐式模型(如神经符号距离函数)高效表示。然而,基于采样的检测规划器中使用的大多数基元计算均设计为与显式环境模型高效协同工作,这反过来要求规划器使用显式环境模型,或在规划过程中频繁进行隐式与显式环境模型之间的转换。本文提出了一组基元计算,称为基于隐式模型的检测规划基元,使得基于采样的检测规划器能够在规划过程中完全使用神经符号距离函数表示。在三种场景下的评估(包括对包含超过9200万个三角网格面的复杂真实世界结构的检测)表明,即使采用IPIM的简易基于采样规划器,也能生成与最先进规划器质量相当的检测轨迹,同时内存使用量比最先进的检测规划器减少高达70倍。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2023年9月22日
Arxiv
23+阅读 · 2021年12月19日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
11+阅读 · 2023年9月22日
Arxiv
23+阅读 · 2021年12月19日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员