An ultimate goal of recommender systems (RS) is to improve user engagement. Reinforcement learning (RL) is a promising paradigm for this goal, as it directly optimizes overall performance of sequential recommendation. However, many existing RL-based approaches induce huge computational overhead, because they require not only the recommended items but also all other candidate items to be stored. This paper proposes an efficient alternative that does not require the candidate items. The idea is to model the correlation between user engagement and items directly from data. Moreover, the proposed approach consider randomness in user feedback and termination behavior, which are ubiquitous for RS but rarely discussed in RL-based prior work. With online A/B experiments on real-world RS, we confirm the efficacy of the proposed approach and the importance of modeling the two types of randomness.


翻译:- 建立长期用户参与度的随机反馈模型 摘要: 此论文的终极目标是提高推荐系统(RS)的用户参与度。强化学习(RL)是实现此目标的有前途的范例,因为它直接优化序列推荐的整体表现。然而,许多现有的RL-based方法会引发巨大的计算开销,因为它们不仅需要存储推荐的项目,还需要存储所有其他候选项目。本文提出了一种高效的替代方法,不需要候选项。其思想是直接从数据中模拟用户参与度和项目之间的相关性。此外,所提出的方法考虑到用户反馈和终止行为中的随机性,在RS中随处可见,但在基于RL的先前工作中很少讨论。通过对真实世界RS的在线A/B实验,我们确认了所提出的方法的功效以及模拟这两种随机性的重要性。

0
下载
关闭预览

相关内容

在机器学习领域,用户参与度是评估开放域对话系统质量的关键指标。通过使用启发式构造的功能(例如转数和对话的总时间),先前的工作集中在对话级别的参与上。在本文中,我们调查了估计话语级别参与度的可能性和有效性,并定义了一种用于自动评估开放域对话系统的新指标,预测性参与度。我们的实验表明:(1)人类注释者在评估话语水平的参与分数方面具有很高的一致性; (2)对话级别的参与度得分可以根据适当汇总的话语级别的参与度得分进行预测。此外,我们表明可以从数据中学到话语水平的参与度分数。这些分数可以改善开放域对话系统的自动评估指标,如与人类判断的相关性所示。这表明预测性参与可以用作实时反馈,以训练更好的对话模型。
JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
7+阅读 · 2022年12月9日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IJCAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
0+阅读 · 2023年5月24日
VIP会员
相关VIP内容
JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
7+阅读 · 2022年12月9日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IJCAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员