Machine learning (ML) has gained significant adoption in Android malware detection to address the escalating threats posed by the rapid proliferation of malware attacks. However, recent studies have revealed the inherent vulnerabilities of ML-based detection systems to evasion attacks. While efforts have been made to address this critical issue, many of the existing defensive methods encounter challenges such as lower effectiveness or reduced generalization capabilities. In this paper, we introduce a novel Android malware detection method, MalPurifier, which exploits adversarial purification to eliminate perturbations independently, resulting in attack mitigation in a light and flexible way. Specifically, MalPurifier employs a Denoising AutoEncoder (DAE)-based purification model to preprocess input samples, removing potential perturbations from them and then leading to correct classification. To enhance defense effectiveness, we propose a diversified adversarial perturbation mechanism that strengthens the purification model against different manipulations from various evasion attacks. We also incorporate randomized "protective noises" onto benign samples to prevent excessive purification. Furthermore, we customize a loss function for improving the DAE model, combining reconstruction loss and prediction loss, to enhance feature representation learning, resulting in accurate reconstruction and classification. Experimental results on two Android malware datasets demonstrate that MalPurifier outperforms the state-of-the-art defenses, and it significantly strengthens the vulnerable malware detector against 37 evasion attacks, achieving accuracies over 90.91%. Notably, MalPurifier demonstrates easy scalability to other detectors, offering flexibility and robustness in its implementation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员