This paper explores the challenges and benefits of a trainable destruction process in diffusion samplers -- diffusion-based generative models trained to sample an unnormalised density without access to data samples. Contrary to the majority of work that views diffusion samplers as approximations to an underlying continuous-time model, we view diffusion models as discrete-time policies trained to produce samples in very few generation steps. We propose to trade some of the elegance of the underlying theory for flexibility in the definition of the generative and destruction policies. In particular, we decouple the generation and destruction variances, enabling both transition kernels to be learned as unconstrained Gaussian densities. We show that, when the number of steps is limited, training both generation and destruction processes results in faster convergence and improved sampling quality on various benchmarks. Through a robust ablation study, we investigate the design choices necessary to facilitate stable training. Finally, we show the scalability of our approach through experiments on GAN latent space sampling for conditional image generation.


翻译:本文探讨了扩散采样器中可训练破坏过程的挑战与优势——这类基于扩散的生成模型旨在无需数据样本的情况下对未归一化密度进行采样。与大多数将扩散采样器视为底层连续时间模型近似的研究不同,我们将扩散模型视为经过训练、能在极少数生成步骤中产生样本的离散时间策略。我们建议牺牲部分底层理论的优雅性,以换取生成策略与破坏策略定义上的灵活性。具体而言,我们解耦了生成方差与破坏方差,使两个转移核都能作为无约束高斯密度进行学习。研究表明,在有限步数条件下,同时训练生成过程与破坏过程可在多种基准测试中实现更快的收敛速度与更优的采样质量。通过严格的消融实验,我们探究了实现稳定训练所必需的设计选择。最后,通过条件图像生成中GAN潜在空间采样的实验,验证了该方法具有良好的可扩展性。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年10月18日
Arxiv
0+阅读 · 2025年10月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员