Amid the COVID-19 pandemic, while the world sought solutions, some scholars exploited the situation for personal gains through deceptive studies and manipulated data. This paper presents the extent of 400 retracted COVID-19 papers listed by the Retraction Watch database until February 2024. The primary purpose of the research was to analyze journal quality and retraction trends. For all stakeholders involved, such as editors, relevant researchers, and policymakers, evaluating the journal's quality is crucial information since it could help them effectively stop such incidents and their negative effects in the future. The present research results imply that one-fourth of publications were retracted within the first month of their publication, followed by an additional 6\% within six months of publication. One-third of the retractions originated from Q1 journals, with another significant portion coming from Q2 (29.8). A notable percentage of the retracted papers (23.2\%) lacked publishing impact, signifying their publication as conference papers or in journals not indexed by Scopus. An examination of the retraction reasons reveals that one-fourth of retractions were due to numerous causes, mostly in Q2 journals, and another quarter were due to data problems, with the majority happening in Q1 publications. Elsevier retracted 31 of the papers, with the majority published in Q1, followed by Springer (11.5), predominantly in Q2. Retracted papers were mainly associated with the USA, China, and India. In the USA, retractions were primarily from Q1 journals followed by no-impact publications; in China, it was Q1 followed by Q2, and in India, it was Q2 followed by no-impact publications. The study also examined author contributions, revealing that 69.3 were male contributors, with females (30.7) mainly holding middle author positions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员