This paper investigates the effectiveness of self-supervised pre-trained transformers compared to supervised pre-trained transformers and conventional neural networks (ConvNets) for detecting various types of deepfakes. We focus on their potential for improved generalization, particularly when training data is limited. Despite the notable success of large vision-language models utilizing transformer architectures in various tasks, including zero-shot and few-shot learning, the deepfake detection community has still shown some reluctance to adopt pre-trained vision transformers (ViTs), especially large ones, as feature extractors. One concern is their perceived excessive capacity, which often demands extensive data, and the resulting suboptimal generalization when training or fine-tuning data is small or less diverse. This contrasts poorly with ConvNets, which have already established themselves as robust feature extractors. Additionally, training and optimizing transformers from scratch requires significant computational resources, making this accessible primarily to large companies and hindering broader investigation within the academic community. Recent advancements in using self-supervised learning (SSL) in transformers, such as DINO and its derivatives, have showcased significant adaptability across diverse vision tasks and possess explicit semantic segmentation capabilities. By leveraging DINO for deepfake detection with modest training data and implementing partial fine-tuning, we observe comparable adaptability to the task and the natural explainability of the detection result via the attention mechanism. Moreover, partial fine-tuning of transformers for deepfake detection offers a more resource-efficient alternative, requiring significantly fewer computational resources.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
35+阅读 · 2021年1月27日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员