We introduce the Push-Forward Signed Distance Morphometric (PF-SDM) for shape quantification in biomedical imaging. The PF-SDM compactly encodes geometric and topological properties of closed shapes, including their skeleton and symmetries. This provides robust and interpretable features for shape comparison and machine learning. The PF-SDM is mathematically smooth, providing access to gradients and differential-geometric quantities. It also extends to temporal dynamics and allows fusing spatial intensity distributions, such as genetic markers, with shape dynamics. We present the PF-SDM theory, benchmark it on synthetic data, and apply it to predicting body-axis formation in mouse gastruloids, outperforming a CNN baseline in both accuracy and speed.


翻译:我们提出了推前向符号距离形态计量学(PF-SDM),用于生物医学成像中的形状量化。PF-SDM紧凑地编码了封闭形状的几何与拓扑特性,包括其骨架与对称性,为形状比较与机器学习提供了稳健且可解释的特征。该方法在数学上是光滑的,可支持梯度与微分几何量的计算。它还可扩展至时间动态分析,并允许将空间强度分布(如遗传标记)与形状动态融合。我们阐述了PF-SDM的理论框架,在合成数据上进行了基准测试,并将其应用于预测小鼠胃胚体的体轴形成过程,在准确性与速度上均优于基于CNN的基线方法。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员