Deep learning can promote the mammography-based computer-aided diagnosis (CAD) for breast cancers, but it generally suffers from the small size sample problem. In this work, a task-driven self-supervised bi-channel networks (TSBNL) framework is proposed to improve the performance of classification network with limited mammograms. In particular, a new gray-scale image mapping (GSIM) task for image restoration is designed as the pretext task to improve discriminate feature representation with label information of mammograms. The TSBNL then innovatively integrates this image restoration network and the downstream classification network into a unified SSL framework, and transfers the knowledge from the pretext network to the classification network with improved diagnostic accuracy. The proposed algorithm is evaluated on a public INbreast mammogram dataset. The experimental results indicate that it outperforms the conventional SSL algorithms for diagnosis of breast cancers with limited samples.


翻译:深层学习可以促进乳癌的乳房X线摄影计算机辅助诊断(CAD),但通常会受到规模小的抽样问题的影响。在这项工作中,提议了一个由任务驱动的自我监督双通道网络(TSBNL)框架,以提高使用有限的乳房X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线的图像恢复任务,作为改善乳房X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线X线xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxmlxmlxmlxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
VIP会员
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Top
微信扫码咨询专知VIP会员