We study the problem of identification of linear dynamical system from a single trajectory, via excitations of isotropic Gaussian. In stark contrast with previously reported results, Ordinary Least Squares (OLS) estimator for even \emph{stable} dynamical system contains non-vanishing error in \emph{high dimensions}; which stems from the fact that realizations of non-diagonalizable dynamics can have strong \emph{spatial correlations} and a variance, of order $O(e^{n})$, where $n$ is the dimension of the underlying state space. Employing \emph{concentration of measure phenomenon}, in particular tensorization of \emph{Talagrands inequality} for random dynamical systems we show that observed trajectory of dynamical system of length-$N$ can have a variance of order $O(e^{nN})$. Consequently, showing some or most of the $n$ distances between an $N-$ dimensional random vector and an $(n-1)$ dimensional hyperplane in $\mathbb{R}^{N}$ can be close to zero with positive probability and these estimates become stronger in high dimensions and more iterations via \emph{Isoperimetry}. \emph{Negative second moment identity}, along with distance estimates give a control on all the singular values of \emph{Random matrix} of data, revealing limitations of OLS for stable non-diagonalizable and explosive diagonalizable systems.


翻译:暂无翻译

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
72+阅读 · 2022年7月11日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年7月7日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员