The study of migrations and mobility has historically been severely limited by the absence of reliable data or the temporal sparsity of the available data. Using geospatial digital trace data, the study of population movements can be much more precisely and dynamically measured. Our research seeks to develop a near real-time (one-day lag) Twitter census that gives a more temporally granular picture of local and non-local population at the county level. Leveraging geotagged tweets to determine the home location of all active Twitter users, we contribute to the field of digital and computational demography by obtaining accurate daily Twitter population stocks (residents and non-residents). Internal validation reveals over 80% of accuracy when compared with users self-reported home location. External validation results suggest these stocks correlate with available statistics of residents/non-residents at the county level and can accurately reflect regular (seasonal tourism) and non-regular events such as the Great American Solar Eclipse of 2017. The findings demonstrate that Twitter holds potential to introduce the dynamic component often lacking in population estimates.


翻译:利用地理空间数字跟踪数据,对人口流动的研究可以更加精确和动态地衡量。我们的研究寻求开发近实时(一天滞后)推特普查,以提供州一级当地和非当地人口的时间性更小的图象。利用地理标签推文来确定所有活跃的推特用户的住址,我们通过获取准确的每日推特人口存量(居民和非居民),为数字和计算人口统计领域作出贡献。内部验证显示,与用户自我报告的家庭所在地相比,准确率超过80%。外部验证结果表明,这些存量与县一级居民/非居民的现有统计数据相关,可以准确反映正常(海上旅游)和非经常事件,如2017年大美国太阳能日落叶。研究结果表明,Twitter有可能引入人口估计数中通常缺乏的动态部分。

0
下载
关闭预览

相关内容

Twitter(推特)是一个社交网络及微博客服务的网站。它利用无线网络,有线网络,通信技术,进行即时通讯,是微博客的典型应用。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
【阿里巴巴】 AI编译器,AI Compiler @ Alibaba,21页ppt
专知会员服务
45+阅读 · 2019年12月22日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
【阿里巴巴】 AI编译器,AI Compiler @ Alibaba,21页ppt
专知会员服务
45+阅读 · 2019年12月22日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Top
微信扫码咨询专知VIP会员