In the average-case $k$-SUM problem, given $r$ integers chosen uniformly at random from $\{0,\dots,M-1\}$, the objective is to find a ``solution'' set of $k$ numbers that sum to $0$ modulo $M$. In the dense regime of $M \leq r^k$, where solutions exist with high probability, the complexity of these problems is well understood. Much less is known in the sparse regime of $M\gg r^k$, where solutions are unlikely to exist. In this work, we initiate the study of the sparse regime for $k$-SUM and its variant $k$-XOR, especially their planted versions, where a random solution is planted in a randomly generated instance and has to be recovered. We provide evidence for the hardness of these problems and suggest new applications to cryptography. Complexity. First we study the complexity of these problems in the sparse regime and show: - Conditional Lower Bounds. Assuming established conjectures about the hardness of average-case (non-planted) $k$-SUM/$k$-XOR when $M = r^k$, we provide non-trivial lower bounds on the running time of algorithms for planted $k$-SUM when $r^k\leq M\leq r^{2k}$. - Hardness Amplification. We show that for any $M \geq r^k$, if an algorithm running in time $T$ solves planted $k$-SUM/$k$-XOR with success probability $\Omega(1/\text{polylog}(r))$, then there is an algorithm running in time $\tilde{O}(T)$ that solves it with probability $(1-o(1))$. - New Reductions and Algorithms. We provide reductions for $k$-SUM/$k$-XOR from search to decision, as well as worst-case and average-case reductions to the Subset Sum problem from $k$-SUM, as well as a new algorithm for average-case $k$-XOR at low densities. Cryptography. We show that by additionally assuming mild hardness of $k$-XOR, we can construct Public Key Encryption (PKE) from a weaker variant of the Learning Parity with Noise (LPN) problem than was known before.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年1月11日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员