We show that it is undecidable to determine whether the commuting operator value of a nonlocal game is strictly greater than 1/2. As a corollary, there is a boolean constraint system (BCS) game for which the value of the Navascu\'es-Pironio-Ac\'in (NPA) hierarchy does not attain the commuting operator value at any finite level. Our contribution involves establishing a computable mapping from Turing machines to BCS nonlocal games in which the halting property of the machine is encoded as a decision problem for the commuting operator value of the game. Our techniques are algebraic and distinct from those used to establish MIP*=RE.


翻译:我们证明,判断非局域博弈的对易算子值是否严格大于1/2是不可判定的。作为推论,存在一个布尔约束系统(BCS)博弈,其Navascués-Pironio-Acín(NPA)层级在任何有限层级上的值都无法达到该博弈的对易算子值。我们的贡献在于构建了一个从图灵机到BCS非局域博弈的可计算映射,其中图灵机的停机性质被编码为博弈对易算子值的判定问题。我们的技术方法是代数性的,与证明MIP*=RE所采用的技术有本质区别。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
57+阅读 · 2022年1月5日
Arxiv
49+阅读 · 2021年9月11日
VIP会员
相关主题
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关论文
Arxiv
16+阅读 · 2022年5月17日
Arxiv
57+阅读 · 2022年1月5日
Arxiv
49+阅读 · 2021年9月11日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员