Household travel surveys have been used for decades to collect individuals and households' travel behavior. However, self-reported surveys are subject to recall bias, as respondents might struggle to recall and report their activities accurately. This study addresses examines the time reporting error of public transit users in a nationwide household travel survey by matching, at the individual level, five consecutive years of data from two sources, namely the Danish National Travel Survey (TU) and the Danish Smart Card system (Rejsekort). Survey respondents are matched with travel cards from the Rejsekort data solely based on the respondents' declared spatiotemporal travel behavior. Approximately, 70% of the respondents were successfully matched with Rejsekort travel cards. The findings reveal a median time reporting error of 11.34 minutes, with an Interquartile Range of 28.14 minutes. Furthermore, a statistical analysis was performed to explore the relationships between the survey respondents' reporting error and their socio-economic and demographic characteristics. The results indicate that females and respondents with a fixed schedule are in general more accurate than males and respondents with a flexible schedule in reporting their times of travel. Moreover, trips reported during weekdays or via the internet displayed higher accuracies compared to trips reported during weekends and holidays or via telephones. This disaggregated analysis provides valuable insights that could help in improving the design and analysis of travel surveys, as well accounting for reporting errors/biases in travel survey-based applications. Furthermore, it offers valuable insights underlying the psychology of travel recall by survey respondents.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员