Differential privacy has emerged as an significant cornerstone in the realm of scientific hypothesis testing utilizing confidential data. In reporting scientific discoveries, Bayesian tests are widely adopted since they effectively circumnavigate the key criticisms of P-values, namely, lack of interpretability and inability to quantify evidence in support of the competing hypotheses. We present a novel differentially private Bayesian hypotheses testing framework that arise naturally under a principled data generative mechanism, inherently maintaining the interpretability of the resulting inferences. Furthermore, by focusing on differentially private Bayes factors based on widely used test statistics, we circumvent the need to model the complete data generative mechanism and ensure substantial computational benefits. We also provide a set of sufficient conditions to establish results on Bayes factor consistency under the proposed framework. The utility of the devised technology is showcased via several numerical experiments.


翻译:差分隐私已成为利用机密数据进行科学假设检验领域的重要基石。在报告科学发现时,贝叶斯检验被广泛采用,因其能有效规避P值的主要批评——即可解释性不足及无法量化支持竞争假设的证据。我们提出了一种新颖的差分隐私贝叶斯假设检验框架,该框架在原则性数据生成机制下自然产生,本质上保持了所得推断的可解释性。此外,通过聚焦于基于广泛使用检验统计量的差分隐私贝叶斯因子,我们规避了对完整数据生成机制建模的需求,并确保了显著的计算优势。我们还提供了一组充分条件,以建立所提框架下贝叶斯因子一致性的相关结果。通过多项数值实验展示了所设计技术的实用性。

0
下载
关闭预览

相关内容

[ICML2024]消除偏差:微调基础模型以进行半监督学习
专知会员服务
18+阅读 · 2024年5月23日
【AAAI2022】自适应的随机平滑防御的鲁棒性认证方法
专知会员服务
26+阅读 · 2021年12月27日
专知会员服务
12+阅读 · 2021年7月16日
专知会员服务
29+阅读 · 2021年6月7日
【MIT】硬负样本的对比学习
专知
13+阅读 · 2020年10月15日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 1月6日
VIP会员
相关VIP内容
[ICML2024]消除偏差:微调基础模型以进行半监督学习
专知会员服务
18+阅读 · 2024年5月23日
【AAAI2022】自适应的随机平滑防御的鲁棒性认证方法
专知会员服务
26+阅读 · 2021年12月27日
专知会员服务
12+阅读 · 2021年7月16日
专知会员服务
29+阅读 · 2021年6月7日
相关资讯
【MIT】硬负样本的对比学习
专知
13+阅读 · 2020年10月15日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员