The Cox regression model and its Bayesian extensions are widely used in survival analysis. However, standard Bayesian approaches require modeling of the baseline hazard, and their full conditional distributions lack closed-form expressions. Therefore, the Metropolis-Hastings sampling algorithm is typically employed, whose efficiency is highly sensitive to the choice of proposal distribution. To address these issues, we propose the GS4Cox, an efficient Gibbs sampling algorithm for the Cox regression model based on four key components: (i) general Bayesian framework, (ii) composite partial likelihood, (iii) P\'olya-Gamma augmentation scheme, and (iv) finite corrections. Our experiments on both synthetic and actual datasets demonstrate that the GS4Cox algorithm outperforms existing sampling methods in terms of convergence speed and sampling efficiency.


翻译:Cox回归模型及其贝叶斯扩展在生存分析中应用广泛。然而,标准的贝叶斯方法需要对基线风险进行建模,且其完全条件分布缺乏闭式表达式。因此,通常采用Metropolis-Hastings采样算法,其效率对建议分布的选择高度敏感。为解决这些问题,我们提出了GS4Cox——一种基于四个关键组成部分的Cox回归模型高效吉布斯采样算法:(i) 通用贝叶斯框架,(ii) 复合偏似然,(iii) Pólya-Gamma数据增广方案,以及(iv) 有限样本校正。我们在合成数据集和真实数据集上的实验表明,GS4Cox算法在收敛速度和采样效率方面均优于现有的采样方法。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员