Gaussian process upper confidence bound (GP-UCB) is a theoretically established algorithm for Bayesian optimization (BO), where we assume the objective function $f$ follows a GP. One notable drawback of GP-UCB is that the theoretical confidence parameter $\beta$ increases along with the iterations and is too large. To alleviate this drawback, this paper analyzes the randomized variant of GP-UCB called improved randomized GP-UCB (IRGP-UCB), which uses the confidence parameter generated from the shifted exponential distribution. We analyze the expected regret and conditional expected regret, where the expectation and the probability are taken respectively with $f$ and noise and with the randomness of the BO algorithm. In both regret analyses, IRGP-UCB achieves a sub-linear regret upper bound without increasing the confidence parameter if the input domain is finite. Furthermore, we show that randomization plays a key role in avoiding an increase in confidence parameter by showing that GP-UCB using a constant confidence parameter can incur linearly growing expected cumulative regret. Finally, we show numerical experiments using synthetic and benchmark functions and real-world emulators.


翻译:高斯过程上置信界(GP-UCB)是贝叶斯优化(BO)中一种理论完备的算法,其假设目标函数$f$服从高斯过程。GP-UCB的一个显著缺陷是其理论置信参数$\beta$随迭代次数增加而增长,且数值过大。为缓解此缺陷,本文分析了GP-UCB的随机化变体——改进型随机化GP-UCB(IRGP-UCB),该算法采用移位指数分布生成的置信参数。我们分析了期望遗憾与条件期望遗憾,其中期望与概率分别针对$f$及噪声、以及BO算法的随机性进行计算。在两种遗憾分析中,若输入域为有限集,IRGP-UCB可在不增加置信参数的情况下获得次线性遗憾上界。此外,通过证明采用常数置信参数的GP-UCB可能导致线性增长的期望累积遗憾,我们揭示了随机化在避免置信参数增长中的关键作用。最后,我们通过合成函数、基准函数及实际仿真器进行了数值实验验证。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年10月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员