We present a neuronal network model inspired by the Ising model, where each neuron is a binary spin ($s_i = \pm1$) interacting with its neighbors on a 2D lattice. Updates are asynchronous and follow Metropolis dynamics, with a temperature-like parameter $T$ introducing stochasticity. To incorporate physiological realism, each neuron includes fixed on/off durations, mimicking the refractory period found in real neurons. These counters prevent immediate reactivation, adding biologically grounded timing constraints to the model. As $T$ varies, the network transitions from asynchronous to synchronised activity. Near a critical point $T_c$, we observe hallmarks of criticality: heightened fluctuations, long-range correlations, and increased sensitivity. These features resemble patterns found in cortical recordings, supporting the hypothesis that the brain operates near criticality for optimal information processing. This simplified model demonstrates how basic spin interactions and physiological constraints can yield complex, emergent behavior, offering a useful tool for studying criticality in neural systems through statistical physics.


翻译:我们提出了一种受伊辛模型启发的神经元网络模型,其中每个神经元是二维晶格上与相邻单元相互作用的二元自旋($s_i = \pm1$)。更新过程采用异步机制并遵循Metropolis动力学,通过类温度参数$T$引入随机性。为增强生理真实性,每个神经元包含固定的激活/静默持续时间,以模拟真实神经元的不应期。这些计数器阻止即时再激活,为模型添加了基于生物学的时序约束。随着$T$的变化,网络活动从异步状态转变为同步状态。在临界点$T_c$附近,我们观察到临界性的典型特征:增强的涨落、长程关联以及提升的敏感度。这些特征与皮层记录中发现的模式相似,支持了大脑在临界点附近运行以实现最优信息处理的假说。该简化模型展示了基础自旋相互作用与生理约束如何产生复杂的涌现行为,为通过统计物理学研究神经系统的临界性提供了有效工具。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员