This article shows that the capacity region of a 2-users weak Gaussian interference channel is achieved using Gaussian code-books. The approach relies on traversing the boundary in incremental steps. Starting from a corner point with Gaussian code-books, and relying on calculus of variation, it is shown that the end point in each step is achieved using Gaussian code-books. Optimality of Gaussian code-books is first established by limiting the random coding to independent and identically distributed scalar (single-letter) samples. Then, it is shown that the optimum solution for vector inputs coincides with the single-letter case. It is also shown that the maximum number of phases needed to realize the gain due to power allocation over time is two. It is also established that the solution to the Han-Kobayashi achievable rate region, with single letter Gaussian random code-books, achieves the optimum boundary.


翻译:本文证明,双用户弱高斯干扰信道的容量区域可通过高斯码本实现。该方法基于逐步遍历边界的思想。从高斯码本对应的角点出发,利用变分法证明每一步的终点均可通过高斯码本实现。首先通过将随机编码限制为独立同分布的标量(单字母)样本,确立了高斯码本的最优性。随后证明向量输入的最优解与单字母情形一致。研究还表明,为实现时域功率分配增益所需的最大相位数为二。最后证实,采用单字母高斯随机码本的Han-Kobayashi可达速率区域解能够达到最优边界。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员