In recent years, user generated content (UGC) has become the dominant force in internet traffic. However, UGC videos exhibit a higher degree of variability and diverse characteristics compared to traditional encoding test videos. This variance challenges the effectiveness of data-driven machine learning algorithms for optimizing encoding in the broader context of UGC scenarios. To address this issue, we propose a Tri-Dynamic Preprocessing framework for UGC. Firstly, we employ an adaptive factor to regulate preprocessing intensity. Secondly, an adaptive quantization level is employed to fine-tune the codec simulator. Thirdly, we utilize an adaptive lambda tradeoff to adjust the rate-distortion loss function. Experimental results on large-scale test sets demonstrate that our method attains exceptional performance.


翻译:近年来,用户生成内容已成为互联网流量的主导力量。然而,与传统编码测试视频相比,UGC视频表现出更高的变异性和多样化的特征。这种差异在更广泛的UGC场景下,对数据驱动的机器学习算法优化编码的有效性提出了挑战。为解决这一问题,我们提出了一种面向UGC的三重动态预处理框架。首先,我们采用自适应因子来调节预处理强度。其次,利用自适应量化级别对编解码器模拟器进行微调。第三,我们通过自适应lambda权衡来调整率失真损失函数。在大规模测试集上的实验结果表明,我们的方法取得了卓越的性能。

0
下载
关闭预览

相关内容

【TPAMI2024】增强视频-语言表示的结构时空对齐方法
专知会员服务
24+阅读 · 2024年6月30日
【CVPR2024】ViewDiff: 3D一致的图像生成与文本到图像模型
专知会员服务
30+阅读 · 2024年3月10日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员