Federated Learning (FL) addresses the challenges posed by data silos, which arise from privacy, security regulations, and ownership concerns. Despite these barriers, FL enables these isolated data repositories to participate in collaborative learning without compromising privacy or security. Concurrently, the advancement of blockchain technology and decentralized applications (DApps) within Web 3.0 heralds a new era of transformative possibilities in web development. As such, incorporating FL into Web 3.0 paves the path for overcoming the limitations of data silos through collaborative learning. However, given the transaction speed constraints of core blockchains such as Ethereum (ETH) and the latency in smart contracts, employing one-shot FL, which minimizes client-server interactions in traditional FL to a single exchange, is considered more apt for Web 3.0 environments. This paper presents a practical one-shot FL system for Web 3.0, termed OFL-W3. OFL-W3 capitalizes on blockchain technology by utilizing smart contracts for managing transactions. Meanwhile, OFL-W3 utilizes the Inter-Planetary File System (IPFS) coupled with Flask communication, to facilitate backend server operations to use existing one-shot FL algorithms. With the integration of the incentive mechanism, OFL-W3 showcases an effective implementation of one-shot FL on Web 3.0, offering valuable insights and future directions for AI combined with Web 3.0 studies.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员