Artificial Intelligence (AI) is expected to play a key role in 6G networks including optimising system management, operation, and evolution. This requires systematic lifecycle management of AI models, ensuring their impact on services and stakeholders is continuously monitored. While current 6G initiatives introduce AI, they often fall short in addressing end-to-end intelligence and crucial aspects like trust, transparency, privacy, and verifiability. Trustworthy AI is vital, especially for critical infrastructures like 6G. This paper introduces the REASON approach for holistically addressing AI's native integration and trustworthiness in future 6G networks. The approach comprises AI Orchestration (AIO) for model lifecycle management, Cognition (COG) for performance evaluation and explanation, and AI Monitoring (AIM) for tracking and feedback. Digital Twin (DT) technology is leveraged to facilitate real-time monitoring and scenario testing, which are essential for AIO, COG, and AIM. We demonstrate this approach through an AI-enabled xAPP use case, leveraging a DT platform to validate, explain, and deploy trustworthy AI models.


翻译:人工智能(AI)预计将在6G网络中发挥关键作用,包括优化系统管理、运营与演进。这需要对AI模型进行系统化的全生命周期管理,确保其服务影响与利益相关方影响得到持续监控。尽管当前6G研究已引入AI技术,但在实现端到端智能化及解决信任、透明度、隐私与可验证性等关键维度方面仍存在不足。可信AI对6G等关键基础设施尤为重要。本文提出REASON方法,以整体性视角解决未来6G网络中AI的原生集成与可信性问题。该方法包含三个核心模块:负责模型生命周期管理的AI编排(AIO)、执行性能评估与可解释性分析的认知模块(COG),以及实现追踪与反馈的AI监控(AIM)。研究通过数字孪生(DT)技术实现实时监控与场景测试,为AIO、COG和AIM提供支撑。我们通过AI增强型xAPP应用案例,借助DT平台验证、解释并部署可信AI模型,展示了该方法的有效性。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员