Visual deep learning (VDL) systems have shown significant success in real-world applications like image recognition, object detection, and autonomous driving. To evaluate the reliability of VDL, a mainstream approach is software testing, which requires diverse and controllable mutations over image semantics. The rapid development of multi-modal large language models (MLLMs) has introduced revolutionary image mutation potentials through instruction-driven methods. Users can now freely describe desired mutations and let MLLMs generate the mutated images. However, the quality of MLLM-produced test inputs in VDL testing remains largely unexplored. We present the first study, aiming to assess MLLMs' adequacy from 1) the semantic validity of MLLM mutated images, 2) the alignment of MLLM mutated images with their text instructions (prompts), 3) the faithfulness of how different mutations preserve semantics that are ought to remain unchanged, and 4) the effectiveness of detecting VDL faults. With large-scale human studies and quantitative evaluations, we identify MLLM's promising potentials in expanding the covered semantics of image mutations. Notably, while SoTA MLLMs (e.g., GPT-4V) fail to support or perform worse in editing existing semantics in images (as in traditional mutations like rotation), they generate high-quality test inputs using "semantic-additive" mutations (e.g., "dress a dog with clothes"), which bring extra semantics to images; these were infeasible for past approaches. Hence, we view MLLM-based mutations as a vital complement to traditional mutations, and advocate future VDL testing tasks to combine MLLM-based methods and traditional image mutations for comprehensive and reliable testing.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员