In this work, we propose a new discretization for second-order total generalized variation (TGV) with some distinct properties compared to existing discrete formulations. The introduced model is based on same design principles as Condat's discrete total variation model (\textit{SIAM J. Imaging Sci}., 10(3), 1258--1290, 2017) and shares its benefits, in particular, improved quality for the solution of imaging problems. An algorithm for image denoising with second-order TGV using the new discretization is proposed. Numerical results obtained with this algorithm demonstrate the discretization's advantages. Moreover, in order to compare invariance properties of the new model, an algorithm for calculating the TGV value with respect to the new discretization model is given.


翻译:本文提出了一种新的二阶全广义变分(TGV)离散化方法,与现有离散模型相比具有若干独特性质。该模型基于与Condat离散全变分模型(《SIAM影像科学杂志》,10(3),1258--1290,2017)相同的设计原则,并继承了其优势,特别是在成像问题求解质量方面的提升。我们提出了一种基于该新型离散化方案、采用二阶TGV的图像去噪算法。该算法的数值结果验证了所提离散化方案的优越性。此外,为比较新模型的旋转不变性,本文还给出了计算该离散化模型下TGV值的算法。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员