We give a contributed discussion on "Model uncertainty and missing data: An Objective Bayesian Perspective", where we discuss frequentist perspectives on the proposed methodology.


翻译:本文对《模型不确定性与缺失数据:一种客观贝叶斯视角》一文提出评论性讨论,从频率学派的视角探讨了该文所提方法论的适用性与局限性。

0
下载
关闭预览

相关内容

【普林斯顿博士论文】图机器学习,137页pdf
专知会员服务
43+阅读 · 2024年5月1日
专知会员服务
66+阅读 · 2021年1月6日
专知会员服务
55+阅读 · 2020年3月16日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
VIP会员
相关VIP内容
【普林斯顿博士论文】图机器学习,137页pdf
专知会员服务
43+阅读 · 2024年5月1日
专知会员服务
66+阅读 · 2021年1月6日
专知会员服务
55+阅读 · 2020年3月16日
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员