Integral linear systems $Ax=b$ with matrices $A$, $b$ and solutions $x$ are also required to be in integers, can be solved using invariant factors of $A$ (by computing the Smith Canonical Form of $A$). This paper explores a new problem which arises in applications, that of obtaining conditions for solving the Modular Linear System $Ax=b\rem n$ given $A,b$ in $\zz_n$ for $x$ in $\zz_n$ along with the constraint that the value of the linear function $\phi(x)=\la w,x\ra$ is coprime to $n$ for some solution $x$. In this paper we develop decomposition of the system to coprime moduli $p^{r(p)}$ which are divisors of $n$ and show how such a decomposition simplifies the computation of Smith form. This extends the well known index calculus method of computing the discrete logarithm where the moduli over which the linear system is reduced were assumed to be prime (to solve the reduced systems over prime fields) to the case when the factors of the modulus are prime powers $p^{r(p)}$. It is shown how this problem can be addressed effciently using the invariant factors and Smith form of the augmented matrix $[A,-p^{r(p)}I]$ and conditions modulo $p$ satisfied by $w$, where $p^{r(p)}$ vary over all divisors of $n$ with $p$ prime.


翻译:整数线性系统 $Ax=b$(其中矩阵 $A$、$b$ 以及解 $x$ 均要求为整数)可通过 $A$ 的不变因子(即计算 $A$ 的史密斯标准型)求解。本文探讨一个在应用中产生的新问题:给定 $\zz_n$ 中的 $A$ 和 $b$,寻求求解模线性系统 $Ax=b\rem n$(其中 $x\in\zz_n$)的条件,并要求存在某个解 $x$ 使得线性函数 $\phi(x)=\la w,x\ra$ 的值与 $n$ 互素。本文发展了将系统分解为 $n$ 的互素模除数 $p^{r(p)}$ 的方法,并展示了这种分解如何简化史密斯形式的计算。这将著名的计算离散对数的指标演算方法(其中为在素域上求解约化系统,假设约化线性系统的模数为素数)推广至模数的因子为素数幂 $p^{r(p)}$ 的情形。研究表明,通过利用增广矩阵 $[A,-p^{r(p)}I]$ 的不变因子和史密斯形式,并结合 $w$ 满足的模 $p$ 条件(其中 $p^{r(p)}$ 取遍 $n$ 的所有素因子幂),可高效处理该问题。

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年9月13日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员