In this paper, we propose a new six-dimensional (6D) movable antenna (6DMA) system for future wireless networks to improve the communication performance. Unlike the traditional fixed-position antenna (FPA) and existing fluid antenna/two-dimensional (2D) movable antenna (FA/2DMA) systems that adjust the positions of antennas only, the proposed 6DMA system consists of distributed antenna surfaces with independently adjustable three-dimensional (3D) positions as well as 3D rotations within a given space. In particular, this paper applies the 6DMA to the base station (BS) in wireless networks to provide full degrees of freedom (DoFs) for the BS to adapt to the dynamic user spatial distribution in the network. However, a challenging new problem arises on how to optimally control the 6D positions and rotations of all 6DMA surfaces at the BS to maximize the network capacity based on the user spatial distribution, subject to the practical constraints on 6D antennas' movement. To tackle this problem, we first model the 6DMA-enabled BS and the user channels with the BS in terms of 6D positions and rotations of all 6DMA surfaces. Next, we propose an efficient alternating optimization algorithm to search for the best 6D positions and rotations of all 6DMA surfaces by leveraging the Monte Carlo simulation technique. Specifically, we sequentially optimize the 3D position/3D rotation of each 6DMA surface with those of the other surfaces fixed in an iterative manner. Numerical results show that our proposed 6DMA-BS can significantly improve the network capacity as compared to the benchmark BS architectures with FPAs or MAs with limited/partial movability, especially when the user distribution is more spatially non-uniform.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员