Given an undirected graph $G=(V,E)$, an {\em $(\alpha,\beta)$-spanner} $H=(V,E')$ is a subgraph that approximately preserves distances; for every $u,v\in V$, $d_H(u,v)\le \alpha\cdot d_G(u,v)+\beta$. An $(\alpha,\beta)$-hopset is a graph $H=(V,E")$, so that adding its edges to $G$ guarantees every pair has an $\alpha$-approximate shortest path that has at most $\beta$ edges (hops), that is, $d_G(u,v)\le d_{G\cup H}^{(\beta)}(u,v)\le \alpha\cdot d_G(u,v)$. Given the usefulness of spanners and hopsets for fundamental algorithmic tasks, several different algorithms and techniques were developed for their construction, for various regimes of the stretch parameter $\alpha$. In this work we develop a single algorithm that can attain all state-of-the-art spanners and hopsets for general graphs, by choosing the appropriate input parameters. In fact, in some cases it also improves upon the previous best results. We also show a lower bound on our algorithm. In \cite{BP20}, given a parameter $k$, a $(O(k^{\epsilon}),O(k^{1-\epsilon}))$-hopset of size $\tilde{O}(n^{1+1/k})$ was shown for any $n$-vertex graph and parameter $0<\epsilon<1$, and they asked whether this result is best possible. We resolve this open problem, showing that any $(\alpha,\beta)$-hopset of size $O(n^{1+1/k})$ must have $\alpha\cdot \beta\ge\Omega(k)$.


翻译:根据一个未支配的图形$G=( V, E) 美元, 一个 $( pha,\beta) 美元( a) 美元( a) 美元( a) 美元( a) 美元( V, E) 美元( 美元) 是一个大约保持距离的子图; 对于每个$( v) 美元( g) 美元( g) = ( V, 美元) 美元( a) 美元( a) 美元( a) 美元( a) 美元( a) 美元( a) 美元( a) 美元( a) 美元( a) 美元( a) 美元( a) 美元( a) 美元( 美元) 美元( 美元) 美元( a( 美元) 美元( a) 美元( a( 美元) 美元( 美元) 美元( b) 美元( 美元) 美元( 美元( b) 美元( 美元( t) 美元( t) 美元( 美元) 美元( ) 美元( 美元) 美元( 美元) 美元( 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元) 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元) 美元( 美元( 美元) ) ) 美元( 美元( 美元( 美元) 美元( ) ) ) ( ) ( ) ) ) ) ( ) ( ) ( ) ( 美元( 美元) ( ) (美元) ( ) ( ) ( ) ( ) ( ) ( ) (美元) (美元) (美元) (美元) (美元( ) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2018年2月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员