The Boolean satisfiability problem (SAT) holds a central place in computational complexity theory as the first shown NP-complete problem. Due to this role, SAT is often used as the benchmark for polynomial-time reductions: if a problem can be reduced to SAT, it is at least as hard as SAT, and hence considered NP-complete. However, the CDF framework offers a structural inversion of this traditional view. Rather than treating SAT as merely a representative of NP-completeness, we investigate whether the syntactic structure of SAT itself -- especially in its 3SAT form -- is the source of semantic explosion and computational intractability observed in NP problems. In other words, SAT is not just the yardstick of NP-completeness, but may be the structural archetype that induces NP-type complexity. This reframing suggests that the P vs NP question is deeply rooted not only in computational resource limits, but in the generative principles of problem syntax, with 3SAT capturing the recursive and non-local constructions that define the boundary between tractable and intractable problems.


翻译:布尔可满足性问题(SAT)作为首个被证明的NP完全问题,在计算复杂性理论中占据核心地位。由于这一角色,SAT常被用作多项式时间归约的基准:若一个问题可归约至SAT,则其至少与SAT同等困难,因此被视为NP完全问题。然而,CDF框架对这一传统观点提出了结构性反转。我们并非仅将SAT视为NP完全性的代表,而是探究SAT自身的句法结构——尤其是其3SAT形式——是否为NP问题中观察到的语义爆炸与计算难解性的根源。换言之,SAT不仅是NP完全性的度量标准,更可能是诱发NP类复杂度的结构原型。这一重构表明,P与NP问题不仅深植于计算资源的限制,更与问题句法的生成原理密切相关,而3SAT所捕捉的递归与非局部构造,正定义了可解问题与难解问题之间的边界。

0
下载
关闭预览

相关内容

SAT是研究者关注命题可满足性问题的理论与应用的第一次年度会议。除了简单命题可满足性外,它还包括布尔优化(如MaxSAT和伪布尔(PB)约束)、量化布尔公式(QBF)、可满足性模理论(SMT)和约束规划(CP),用于与布尔级推理有明确联系的问题。官网链接:http://sat2019.tecnico.ulisboa.pt/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
43+阅读 · 2024年1月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员