The memory controller is in charge of managing DRAM maintenance operations (e.g., refresh, RowHammer protection, memory scrubbing) in current DRAM chips. Implementing new maintenance operations often necessitates modifications in the DRAM interface, memory controller, and potentially other system components. Such modifications are only possible with a new DRAM standard, which takes a long time to develop, leading to slow progress in DRAM systems. In this paper, our goal is to 1) ease, and thus accelerate, the process of enabling new DRAM maintenance operations and 2) enable more efficient in-DRAM maintenance operations. Our idea is to set the memory controller free from managing DRAM maintenance. To this end, we propose Self-Managing DRAM (SMD), a new low-cost DRAM architecture that enables implementing new in-DRAM maintenance mechanisms (or modifying old ones) with no further changes in the DRAM interface, memory controller, or other system components. We use SMD to implement new in-DRAM maintenance mechanisms for three use cases: 1) periodic refresh, 2) RowHammer protection, and 3) memory scrubbing. We show that SMD enables easy adoption of efficient maintenance mechanisms that significantly improve the system performance and energy efficiency while providing higher reliability compared to conventional DDR4 DRAM. A combination of SMD-based maintenance mechanisms that perform refresh, RowHammer protection, and memory scrubbing achieve 7.6% speedup and consume 5.2% less DRAM energy on average across 20 memory-intensive four-core workloads. We make SMD source code openly and freely available at https://github.com/CMU-SAFARI/SelfManagingDRAM.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员