In the 1960s, Atkinson introduced an abstract algebraic setting for multiparameter eigenvalue problems. He showed that a nonsingular multiparameter eigenvalue problem is equivalent to the associated system of generalized eigenvalue problems, which is a key relation for many theoretical results and numerical methods for nonsingular multiparameter eigenvalue problems. In 2009, Muhi\v{c} and Plestenjak extended the above relation to a class of singular two-parameter eigenvalue problems with coprime characteristic polynomials and such that all finite eigenvalues are algebraically simple. They introduced a way to solve a singular two-parameter eigenvalue problem by computing the common regular eigenvalues of the associated system of two singular generalized eigenvalue problems. Using new tools, in particular the stratification theory, we extend this connection to singular two-parameter eigenvalue problems with possibly multiple eigenvalues and such that characteristic polynomials can have a nontrivial common factor.


翻译:1960年代, Atkinson 引入了多参数电子价值问题的抽象代数设置。 他显示,非单数多参数电子价值问题相当于通用电子价值问题的相关系统,这是许多非单数多参数电子价值问题理论结果和数字方法的关键关系。 2009年, Muhi\v{c} 和 Plestenjak 将上述关系扩展至一类单数双参数电子价值问题,其中含有多个特性的多数值,因此所有有限的电子价值都是简单的。他们引入了一种方法,通过计算两个单一通用电子价值问题相关系统共同的正常电子价值来解决单数电子价值问题。我们使用新的工具,特别是分层理论,将这种联系扩展至单一的两参数电子价值问题,其中可能含有多个电子价值,而且特性的多数值可能具有非三维共同因素。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员