We propose a novel approach for sequential optimal experimental design (sOED) for Bayesian inverse problems involving expensive models with large-dimensional unknown parameters. The focus of this work is on designs that maximize the expected information gain (EIG) from prior to posterior, which is a computationally challenging task in the non-Gaussian setting. This challenge is amplified in sOED, as the incremental expected information gain (iEIG) must be approximated multiple times in distinct stages, with both prior and posterior distributions often being intractable. To address this, we derive a derivative-based upper bound for the iEIG, which not only guides design placement but also enables the construction of projectors onto likelihood-informed subspaces, facilitating parameter dimension reduction. By combining this approach with conditional measure transport maps for the sequence of posteriors, we develop a unified framework for sOED, together with amortized inference, scalable to high- and infinite-dimensional problems. Numerical experiments for two inverse problems governed by partial differential equations (PDEs) demonstrate the effectiveness of designs that maximize our proposed upper bound.


翻译:暂无翻译

0
下载
关闭预览

相关内容

设计是对现有状的一种重新认识和打破重组的过程,设计让一切变得更美。
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
Arxiv
26+阅读 · 2020年2月21日
Augmentation for small object detection
Arxiv
13+阅读 · 2019年2月19日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员