We use elliptic partial differential equations (PDEs) as examples to show various properties and behaviors when shallow neural networks (SNNs) are used to represent the solutions. In particular, we study the numerical ill-conditioning, frequency bias, and the balance between the differential operator and the shallow network representation for different formulations of the PDEs and with various activation functions. Our study shows that the performance of Physics-Informed Neural Networks (PINNs) or Deep Ritz Method (DRM) using linear SNNs with power ReLU activation is dominated by their inherent ill-conditioning and spectral bias against high frequencies. Although this can be alleviated by using non-homogeneous activation functions with proper scaling, achieving such adaptivity for nonlinear SNNs remains costly due to ill-conditioning.


翻译:本文以椭圆型偏微分方程为例,探讨了使用浅层神经网络表示解时的多种性质与行为。具体而言,我们研究了不同偏微分方程形式及各类激活函数下数值病态性、频率偏差以及微分算子与浅层网络表示之间的平衡关系。研究表明,采用幂次ReLU激活的线性浅层神经网络构建的物理信息神经网络或深度Ritz方法,其性能主要受固有的病态性和对高频分量的谱偏差所主导。尽管通过使用具有适当缩放的非齐次激活函数可以缓解这一问题,但对于非线性浅层神经网络而言,由于病态性的存在,实现此类自适应仍代价高昂。

0
下载
关闭预览

相关内容

人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。 最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。
专知会员服务
39+阅读 · 2021年6月11日
专知会员服务
51+阅读 · 2021年5月19日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
重新思考图卷积网络:GNN只是一种滤波器
新智元
28+阅读 · 2019年6月3日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年12月31日
VIP会员
相关资讯
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
重新思考图卷积网络:GNN只是一种滤波器
新智元
28+阅读 · 2019年6月3日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员