DaemonSec is an early-stage startup exploring machine learning (ML)-based security for Linux daemons, a critical yet often overlooked attack surface. While daemon security remains underexplored, conventional defenses struggle against adaptive threats and zero-day exploits. To assess the perspectives of IT professionals on ML-driven daemon protection, a systematic interview study based on semi-structured interviews was conducted with 22 professionals from industry and academia. The study evaluates adoption, feasibility, and trust in ML-based security solutions. While participants recognized the potential of ML for real-time anomaly detection, findings reveal skepticism toward full automation, limited security awareness among non-security roles, and concerns about patching delays creating attack windows. This paper presents the methods, key findings, and implications for advancing ML-driven daemon security in industry.


翻译:DaemonSec是一家探索基于机器学习(ML)的Linux守护进程安全的早期初创企业,该领域是一个关键但常被忽视的攻击面。尽管守护进程安全研究尚不充分,传统防御措施在应对自适应威胁和零日漏洞利用方面存在不足。为评估IT专业人员对ML驱动守护进程保护的看法,本研究基于半结构化访谈,对来自工业界和学术界的22名专业人员进行了系统性访谈研究。该研究评估了ML安全解决方案的采用度、可行性和可信度。尽管参与者认可ML在实时异常检测方面的潜力,但研究发现存在对完全自动化的怀疑、非安全岗位人员安全意识有限,以及对补丁延迟造成攻击窗口的担忧。本文介绍了推动工业界ML驱动守护进程安全的方法、关键发现及启示。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员