In this study we develop dimension-reduction techniques to accelerate diffusion model inference in the context of synthetic data generation. The idea is to integrate compressed sensing into diffusion models (hence, CSDM): First, compress the dataset into a latent space (from an ambient space), and train a diffusion model in the latent space; next, apply a compressed sensing algorithm to the samples generated in the latent space for decoding back to the original space; and the goal is to facilitate the efficiency of both model training and inference. Under certain sparsity assumptions on data, our proposed approach achieves provably faster convergence, via combining diffusion model inference with sparse recovery. It also sheds light on the best choice of the latent space dimension. To illustrate the effectiveness of this approach, we run numerical experiments on a range of datasets, including handwritten digits, medical and climate images, and financial time series for stress testing.


翻译:本研究开发了维度约减技术,以加速合成数据生成场景下的扩散模型推理。核心思想是将压缩感知融入扩散模型(即CSDM框架):首先将数据集从原始空间压缩至潜在空间,并在潜在空间中训练扩散模型;随后对潜在空间生成的样本应用压缩感知算法,将其解码回原始空间;该方法旨在同步提升模型训练与推理效率。在数据满足特定稀疏性假设的前提下,通过将扩散模型推理与稀疏恢复技术相结合,所提方法可实现理论可证的速度收敛。研究同时揭示了潜在空间维度的最优选择准则。为验证方法的有效性,我们在多类数据集上进行了数值实验,包括手写数字、医学与气候图像,以及用于压力测试的金融时间序列。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员