We address the problem of exact and approximate transformation of quantum dichotomies in the asymptotic regime, i.e., the existence of a quantum channel $\mathcal E$ mapping $\rho_1^{\otimes n}$ into $\rho_2^{\otimes R_nn}$ with an error $\epsilon_n$ (measured by trace distance) and $\sigma_1^{\otimes n}$ into $\sigma_2^{\otimes R_n n}$ exactly, for a large number $n$. We derive second-order asymptotic expressions for the optimal transformation rate $R_n$ in the small, moderate, and large deviation error regimes, as well as the zero-error regime, for an arbitrary pair $(\rho_1,\sigma_1)$ of initial states and a commuting pair $(\rho_2,\sigma_2)$ of final states. We also prove that for $\sigma_1$ and $\sigma_2$ given by thermal Gibbs states, the derived optimal transformation rates in the first three regimes can be attained by thermal operations. This allows us, for the first time, to study the second-order asymptotics of thermodynamic state interconversion with fully general initial states that may have coherence between different energy eigenspaces. Thus, we discuss the optimal performance of thermodynamic protocols with coherent inputs and describe three novel resonance phenomena allowing one to significantly reduce transformation errors induced by finite-size effects. What is more, our result on quantum dichotomies can also be used to obtain, up to second-order asymptotic terms, optimal conversion rates between pure bipartite entangled states under local operations and classical communication.


翻译:暂无翻译

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员