Within the framework of deep learning we demonstrate the emergence of the singular value decomposition (SVD) of the weight matrix as a tool for interpretation of neural networks (NN) when combined with the descrambling transformation--a recently-developed technique for addressing interpretability in noisy parameter estimation neural networks \cite{amey2021neural}. By considering the averaging effect of the data passed to the descrambling minimization problem, we show that descrambling transformations--in the large data limit--can be expressed in terms of the SVD of the NN weights and the input autocorrelation matrix. Using this fact, we show that within the class of noisy parameter estimation problems the SVD may be the structure through which trained networks encode a signal model. We substantiate our theoretical findings with empirical evidence from both linear and non-linear signal models. Our results also illuminate the connections between a mathematical theory of semantic development \cite{saxe2019mathematical} and neural network interpretability.


翻译:暂无翻译

0
下载
关闭预览

相关内容

奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,奇异值分解则是特征分解在任意矩阵上的推广。在信号处理、统计学等领域有重要应用。
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员