We introduce a principled learning to optimize (L2O) framework for solving fixed-point problems involving general nonexpansive mappings. Our idea is to deliberately inject summable perturbations into a standard Krasnosel'skii-Mann iteration to improve its average-case performance over a specific distribution of problems while retaining its convergence guarantees. Under a metric sub-regularity assumption, we prove that the proposed parametrization includes only iterations that locally achieve linear convergence-up to a vanishing bias term-and that it encompasses all iterations that do so at a sufficiently fast rate. We then demonstrate how our framework can be used to augment several widely-used operator splitting methods to accelerate the solution of structured monotone inclusion problems, and validate our approach on a best approximation problem using an L2O-augmented Douglas-Rachford splitting algorithm.


翻译:我们提出了一种基于学习优化(L2O)的理论框架,用于求解涉及一般非扩张映射的不动点问题。其核心思想是在标准的Krasnosel'skii-Mann迭代中,有目的地引入可求和扰动,以提升其在特定问题分布上的平均性能,同时保持收敛性保证。在度量次正则性假设下,我们证明了所提出的参数化方法仅包含局部实现线性收敛(至可忽略的偏差项)的迭代过程,并且涵盖了所有以足够快速度实现该收敛的迭代。随后,我们展示了如何利用该框架增强多种广泛使用的算子分裂方法,以加速结构化单调包含问题的求解,并通过采用L2O增强的Douglas-Rachford分裂算法,在最佳逼近问题上验证了该方法的有效性。

0
下载
关闭预览

相关内容

UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【NeurIPS2021】序一致因果图的多任务学习
专知会员服务
20+阅读 · 2021年11月7日
【NeurIPS 2021】学会学习图拓扑
专知会员服务
25+阅读 · 2021年10月22日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【NeurIPS2021】序一致因果图的多任务学习
专知会员服务
20+阅读 · 2021年11月7日
【NeurIPS 2021】学会学习图拓扑
专知会员服务
25+阅读 · 2021年10月22日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员