This article proposes a data-driven PID controller design based on the principle of adaptive gain optimization, leveraging Physics-Informed Neural Networks (PINNs) generated for predictive modeling purposes. The proposed control design method utilizes gradients of the PID gain optimization, achieved through the automatic differentiation of PINNs, to apply model predictive control using a cost function based on tracking error and control inputs. By optimizing PINNs-based PID gains, the method achieves adaptive gain tuning that ensures stability while accounting for system nonlinearities. The proposed method features a systematic framework for integrating PINNs-based models of dynamical control systems into closed-loop control systems, enabling direct application to PID control design. A series of numerical experiments is conducted to demonstrate the effectiveness of the proposed method from the control perspectives based on both time and frequency domains.


翻译:本文提出一种基于自适应增益优化原理的数驱PID控制器设计方法,该方法利用为预测建模目的生成的物理信息神经网络(PINNs)。所提出的控制设计方法利用通过PINNs自动微分实现的PID增益优化梯度,基于跟踪误差与控制输入的成本函数应用模型预测控制。通过优化基于PINNs的PID增益,该方法实现了能确保稳定性并兼顾系统非线性的自适应增益调节。所提方法具备将动态控制系统的PINNs模型集成至闭环控制系统的系统化框架,可直接应用于PID控制设计。通过一系列数值实验,从时域和频域的控制视角验证了所提方法的有效性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员