The increasing complexity of LLMs presents significant challenges to their transparency and interpretability, necessitating the use of eXplainable AI (XAI) techniques to enhance trustworthiness and usability. This study introduces a comprehensive evaluation framework with four novel metrics for assessing the effectiveness of five XAI techniques across five LLMs and two downstream tasks. We apply this framework to evaluate several XAI techniques LIME, SHAP, Integrated Gradients, Layer-wise Relevance Propagation (LRP), and Attention Mechanism Visualization (AMV) using the IMDB Movie Reviews and Tweet Sentiment Extraction datasets. The evaluation focuses on four key metrics: Human-reasoning Agreement (HA), Robustness, Consistency, and Contrastivity. Our results show that LIME consistently achieves high scores across multiple LLMs and evaluation metrics, while AMV demonstrates superior Robustness and near-perfect Consistency. LRP excels in Contrastivity, particularly with more complex models. Our findings provide valuable insights into the strengths and limitations of different XAI methods, offering guidance for developing and selecting appropriate XAI techniques for LLMs.


翻译:随着LLM复杂性的不断增加,其透明度和可解释性面临重大挑战,这需要使用可解释人工智能(XAI)技术来增强其可信度和可用性。本研究引入了一个综合评估框架,包含四项新颖指标,用于评估五种XAI技术在五种LLM和两项下游任务中的有效性。我们应用该框架,使用IMDB电影评论和推文情感提取数据集,评估了LIME、SHAP、积分梯度、逐层相关性传播(LRP)和注意力机制可视化(AMV)这几种XAI技术。评估聚焦于四个关键指标:人类推理一致性(HA)、鲁棒性、一致性和对比性。我们的结果表明,LIME在多个LLM和评估指标上始终获得高分,而AMV则表现出卓越的鲁棒性和近乎完美的一致性。LRP在对比性方面表现突出,尤其是在更复杂的模型中。我们的研究结果为不同XAI方法的优势与局限性提供了有价值的见解,为开发和选择适用于LLM的XAI技术提供了指导。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员