This work presents an analysis of the efficiency of image augmentations for the face recognition problem from limited data. We considered basic manipulations, generative methods, and their combinations for augmentations. Our results show that augmentations, in general, can considerably improve the quality of face recognition systems and the combination of generative and basic approaches performs better than the other tested techniques.


翻译:这项工作从有限的数据中分析了面部识别问题的图像放大效率。 我们考虑了基本操作、基因组化方法及其组合的增强。 我们的结果表明,总体而言,增强可以大大改善面部识别系统的质量以及基因组化和基本方法的结合效果优于其他测试技术。

0
下载
关闭预览

相关内容

Beginner's All-purpose Symbolic Instruction Code(初学者通用的符号指令代码),刚开始被作者写做 BASIC,后来被微软广泛地叫做 Basic 。
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月9日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员